An Integral Transform Solution of the Differential Equation for the Transverse Motion of an Elastic Beam

ثبت نشده
چکیده

It is well known* that certain types of partial differential equation may be solved using integral transforms with suitable kernels. In general, these equations may be solved by the classical method of separating variables, but the use of an integral transform yields the solution in a more direct way in the sense that the boundary values are contained in the solution. It is the purpose of this note to apply this technique to obtain the solution of the differential equation associated with the transverse motion of an elastic beam for a wide class of boundary conditions. The inversion theorem for a finite integral transform is in the form of a series expansion of the characteristic functions of the differential system, and the normalisation of these functions may involve laborious integrations. It is shown in §3 how the expansion coefficients may be obtained algebraically, thereby simplifying the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-analytical Approach for Free Vibration Analysis of Variable Cross-Section Beams Resting on Elastic Foundation and under Axial Force

in this paper, free vibration of an Euler-Bernoulli beam with variable cross-section resting on elastic foundation and under axial tensile force is considered. Beam’s constant height and exponentially varying width yields variable cross-section. The problem is handled for three different boundary conditions: clamped-clamped, simply supported-simply supported and clamp-free beams. First, the equ...

متن کامل

Rayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space

In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function.   The general solution of the equation of motion is obtained, which satisfies the required radiation condition.  The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...

متن کامل

A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution

In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of E...

متن کامل

Analytical vibroacoustic modeling of an elastic Rayleigh beam using Green's function

The purpose of this article is to provide an analytical model of the vibroacoustic for an elastic beam submerged in low subsonic flows with mean velocities. In general, vibroacoustic modeling refers to the combined effects of sound propagation and mechanical vibration of the structure. Sound radiations from submerged structures are coupled with physical phenomena because the sound pressures act...

متن کامل

Analytical bending solution of fully clamped orthotropic rectangular plates resting on elastic foundations by the finite integral transform method

This study presents exact bending solution of fully clamped orthotropic rectangular plates subjected to arbitrary loads resting on elastic foundations, based on the finite integral transform method. In this method, it is not necessary to determine the deformation function because the basic governing equations of the classical plate theory for orthotropic plates have been used‌. A detailed param...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007